1. 主页 > vs安装问题 > VS2013安装问题 >

vs2013和cuda7.5配置使用

一、前言

由于想学习gpu并行运算提高计算效率,并且经过数次配置失败,最后终于成功了,于是决定把配置过程写下来,希望别人少走个坑,vs2013和cuda7.5配置主要参考了http://blog.csdn.net/u013422712/article/details/49498055

二、电脑配置

电脑配置为Windows7 + VS2013+ NVIDIA GeForce GT 550M

三、安装cuda

进入cuda官网https://developer.nvidia.com/cuda-downloads,下载新版cuda,我这里是7.5.18,正常安装即可,路径均为默认路径。默认安装在C盘。

四、配置环境变量

修改环境变量,安装完cuda7.5,系统会自动生成2个系统变量CUDA_PATH和CUDA_PATH_V7_5。

变量名:CUDA_PATH

变量值:C:\ProgramFiles\NVIDIA GPU Computing Toolkit\CUDA\v7.5

变量名:CUDA_PATH_V7_5

变量值:C:\ProgramFiles\NVIDIA GPU Computing Toolkit\CUDA\v7.5

       需要继续在系统变量添加

变量名:CUDA_SDK_PATH

变量值:C:\ProgramData\NVIDIACorporation\CUDA Samples\v7.5

变量名:CUDA_LIB_PATH

变量值:%CUDA_PATH%\lib\x64

变量名:CUDA_BIN_PATH

变量值:%CUDA_PATH%\bin

变量名:CUDA_SDK_BIN_PATH

变量值:%CUDA_SDK_PATH%\bin\x64

变量名:CUDA_SDK_LIB_PATH

变量值:%CUDA_SDK_PATH%\common\lib\x64

       最后在系统变量PATH的变量值后面添加:

;%CUDA_LIB_PATH%;%CUDA_BIN_PATH%;%CUDA_SDK_LIB_PATH%;%CUDA_SDK_BIN_PATH%;

五、安装最新显卡驱动

       去英伟达官网http://www.geforce.cn/drivers下载最新的显卡驱动,在设备管理器可看显卡驱动,我的是NVIDIA GeForce GT 550M,故下载

下载后默认路径安装即可

六、vs2013设置

打开VS2013并建立一个空的win32控制台项目

a.右键工程 -> 生成依赖项 -> 生成自定义,选择CUDA 7.5

b.右键项目 -> 属性 -> 配置属性 -> VC++目录,添加以下两个包含目录:

C:\Program Files\NVIDIA GPU ComputingToolkit\CUDA\v7.5\include

C:\ProgramData\NVIDIA Corporation\CUDASamples\v7.5\common\inc

再添加以下两个库目录:

C:\Program Files\NVIDIA GPU ComputingToolkit\CUDA\v7.5\lib\x64

C:\ProgramData\NVIDIA Corporation\CUDASamples\v7.5\common\lib\x64

c.右键项目 -> 属性 -> 配置属性 ->链接器 -> 常规 -> 附加库目录,添加以下目录:

$(CUDA_PATH_V7_5)\lib\$(Platform)

d.右键项目 -> 属性 -> 配置属性 ->链接器 -> 输入 -> 附加依赖项,添加以下库:

其实就是  C:\Program Files\NVIDIA GPU ComputingToolkit\CUDA\v7.5\lib\x64 目录下的库

cublas.lib

cublas_device.lib

cuda.lib

cudadevrt.lib

cudart.lib

cudart_static.lib

cufft.lib

cufftw.lib

curand.lib

cusolver.lib

cusparse.lib

nppc.lib

nppi.lib

npps.lib

nvblas.lib

nvcuvid.lib

nvrtc.lib

OpenCL.lib

e.打开配置管理器,将活动平台改为x64


一、测试

右键源文件 -> 添加 -> 新建项,选择CUDA C++/C文件,创建main.cu

在main.cu中输入以下程序

//////////main.cu////////////////

#include "cuda_runtime.h"
#include "cublas_v2.h"

#include <time.h>
#include <iostream>

using namespace std;

// 定义测试矩阵的维度
int const M = 5;
int const N = 10;

int main()
{
	// 定义状态变量
	cublasStatus_t status;

	// 在 内存 中为将要计算的矩阵开辟空间
	float *h_A = (float*)malloc(N*M*sizeof(float));
	float *h_B = (float*)malloc(N*M*sizeof(float));

	// 在 内存 中为将要存放运算结果的矩阵开辟空间
	float *h_C = (float*)malloc(M*M*sizeof(float));

	// 为待运算矩阵的元素赋予 0-10 范围内的随机数
	for (int i = 0; i<N*M; i++) {
		h_A[i] = (float)(rand() % 10 + 1);
		h_B[i] = (float)(rand() % 10 + 1);

	}

	// 打印待测试的矩阵
	cout << "矩阵 A :" << endl;
	for (int i = 0; i<N*M; i++){
		cout << h_A[i] << " ";
		if ((i + 1) % N == 0) cout << endl;
	}
	cout << endl;
	cout << "矩阵 B :" << endl;
	for (int i = 0; i<N*M; i++){
		cout << h_B[i] << " ";
		if ((i + 1) % M == 0) cout << endl;
	}
	cout << endl;

	/*
	** GPU 计算矩阵相乘
	*/

	// 创建并初始化 CUBLAS 库对象
	cublasHandle_t handle;
	status = cublasCreate(&handle);

	if (status != CUBLAS_STATUS_SUCCESS)
	{
		if (status == CUBLAS_STATUS_NOT_INITIALIZED) {
			cout << "CUBLAS 对象实例化出错" << endl;
		}
		getchar();
		return EXIT_FAILURE;
	}

	float *d_A, *d_B, *d_C;
	// 在 显存 中为将要计算的矩阵开辟空间
	cudaMalloc(
		(void**)&d_A,    // 指向开辟的空间的指针
		N*M * sizeof(float)    // 需要开辟空间的字节数
		);
	cudaMalloc(
		(void**)&d_B,
		N*M * sizeof(float)
		);

	// 在 显存 中为将要存放运算结果的矩阵开辟空间
	cudaMalloc(
		(void**)&d_C,
		M*M * sizeof(float)
		);

	// 将矩阵数据传递进 显存 中已经开辟好了的空间
	cublasSetVector(
		N*M,    // 要存入显存的元素个数
		sizeof(float),    // 每个元素大小
		h_A,    // 主机端起始地址
		1,    // 连续元素之间的存储间隔
		d_A,    // GPU 端起始地址
		1    // 连续元素之间的存储间隔
		);
	cublasSetVector(
		N*M,
		sizeof(float),
		h_B,
		1,
		d_B,
		1
		);

	// 同步函数
	cudaThreadSynchronize();

	// 传递进矩阵相乘函数中的参数,具体含义请参考函数手册。
	float a = 1; float b = 0;
	// 矩阵相乘。该函数必然将数组解析成列优先数组
	cublasSgemm(
		handle,    // blas 库对象 
		CUBLAS_OP_T,    // 矩阵 A 属性参数
		CUBLAS_OP_T,    // 矩阵 B 属性参数
		M,    // A, C 的行数 
		M,    // B, C 的列数
		N,    // A 的列数和 B 的行数
		&a,    // 运算式的 α 值
		d_A,    // A 在显存中的地址
		N,    // lda
		d_B,    // B 在显存中的地址
		M,    // ldb
		&b,    // 运算式的 β 值
		d_C,    // C 在显存中的地址(结果矩阵)
		M    // ldc
		);

	// 同步函数
	cudaThreadSynchronize();

	// 从 显存 中取出运算结果至 内存中去
	cublasGetVector(
		M*M,    //  要取出元素的个数
		sizeof(float),    // 每个元素大小
		d_C,    // GPU 端起始地址
		1,    // 连续元素之间的存储间隔
		h_C,    // 主机端起始地址
		1    // 连续元素之间的存储间隔
		);

	// 打印运算结果
	cout << "计算结果的转置 ( (A*B)的转置 ):" << endl;

	for (int i = 0; i<M*M; i++){
		cout << h_C[i] << " ";
		if ((i + 1) % M == 0) cout << endl;
	}

	// 清理掉使用过的内存
	free(h_A);
	free(h_B);
	free(h_C);
	cudaFree(d_A);
	cudaFree(d_B);
	cudaFree(d_C);

	// 释放 CUBLAS 库对象
	cublasDestroy(handle);
	getchar();
	return 0;
}

如果成功使用gpu函数,则可获得结果如下


本文由VS软件圈(vssoft.net)发布,不代表VS软件圈立场,转载联系作者并注明出处:https://vssoft.net/vsazwt/VS2013anzhuangwenti/2020/0727/5909.html

联系我们

在线咨询:点击这里给我发消息

微信号:PREEE8

工作日:9:30-18:30,节假日休息